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microwave-accelerated rearrangement reaction
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Abstract—An efficient synthesis of functionalized pyrimidones via microwave-accelerated rearrangement reaction of amidoxime
DMAD adducts is described. In most cases, the pyrimidone formation was furnished in reasonable yield after 2 min of microwave
irradiation.
� 2005 Elsevier Ltd. All rights reserved.
Table 1. Solvent effect for the microwave-assisted rearrangement
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Substituted pyrimidones of type C represent an impor-
tant class of compounds due to their well-known biologi-
cal activity.1 Pyrimidones of this type were recently
found to inhibit a series of hepatitis C virus (HCV)
NSSB polymerase2 and have also shown anxiolytic
activity.3 Most synthetic strategies toward these densely
functionalized heterocycles are based on two synthetic
methods. The first is a three-step sequence that involves
two condensations and a deprotected step from com-
mercially available materials.4 The second method uses
a Michael reaction between substituted amidoximes of
type A with dimethyl acetylenedicarboxylate (DMAD)
followed by thermal rearrangement of intermediate B
(Scheme 1).5 The Michael reaction/thermal rearrange-
ment sequence typically affords pyrimidones in only
30–40% overall yield in the few examples that have been
reported.2,3,5

The use of microwave irradiation to assist organic reac-
tions has shown considerable advantages over thermal
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reactions.6 Reactions that typically require high temper-
atures and extended reaction times have been tremen-
dously accelerated using microwave irradiation.7

Herein, we report on a two-step, one-pot conversion
of aldoximes to pyrimidones via a microwave-assisted
thermal rearrangement of intermediate B.

For reaction optimization studies, we focused on ami-
doxime DMAD adducts 1a, which were isolated as a
mixture of cis/trans (ratio ca. 6–10:1) crystalline solid
Entries Solventsa Assay yield (%)

1 Neat 52
2 1,2-Dichlorobenzene 62
3 DME 54
4 1,2-Dichloroethane 50
5 1,4-Dioxane 66
6 DMF 38
7 IPA 35
8 Toluene 47
9 Acetonitrile 48
10 o-Xylene 68

aDME = ethylene glycol dimethyl ether, DMF = N,N-dimethyl-
formamide; IPA = 2-propanol.
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in quantitative yield by treatment of 4-fluoro-N 0-
hydroxybenzenecarboximidamide with DMAD in
methanol. Intermediate 1a was irradiated8 for 2 min
(internal temperatures reached 185 �C) in a variety of
solvents and all reactions gave >95% conversion (Table
1). We were also delighted to find that several solvents
provided assay yields in >60%.9
Table 2. Synthesis of pyrimidones
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a The hydroxyamidines were prepared by reaction of their corresponding nit
b Isolated yield.
The desired pyrimidone 1 is isolated by direct precipita-
tion from the crude mixture via filtration to afford 60%
isolated yield in >95% purity (entry 1).

The scope of the reaction sequence was investigated and
all substrates shown in Table 2 were converted to pyrimi-
dones in reasonable yield over two steps. In practice, the
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amidoxime was dissolved in methanol, DMAD
(1.05 equiv) was added dropwise at �10 �C, and then
slowly allowed to warm to ambient temperature over
6 h (>98% conversion). The reaction mixture was con-
centrated and then dissolved in o-xylene. The solution
was microwave irradiated8 for 1–2 min and the resulting
slurry was aged at room temperature for 1 h. The crys-
talline solid was isolated by filtration, washed with tolu-
ene, MTBE, and finally 1:1 methanol/0.5 N HCl. The
solid was then dried under vacuum to afford the desired
pyrimidone. A variety of substituted aldoximes includ-
ing aromatic (entries 1–6),10 and functionalized aliphatic
(entries 7–9), and N-protected a-amino amidoximes (en-
tries 10 and 11) were efficiently cyclized to the corre-
sponding pyrimidones in an average isolated yield of
52%.11

In conclusion, we have developed a practical and effi-
cient procedure for the rapid construction of highly
functionalized pyrimidones via microwave irradiation.
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