

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 1315-1317

Tetrahedron Letters

Efficient synthesis of functionalized pyrimidones via microwave-accelerated rearrangement reaction

Yong-Li Zhong,* Hua Zhou, Donald R. Gauthier, Jr. and David Askin

Department of Process Research, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA

Received 2 December 2005; accepted 12 December 2005 Available online 28 December 2005

Abstract—An efficient synthesis of functionalized pyrimidones via microwave-accelerated rearrangement reaction of amidoxime DMAD adducts is described. In most cases, the pyrimidone formation was furnished in reasonable yield after 2 min of microwave irradiation.

© 2005 Elsevier Ltd. All rights reserved.

Substituted pyrimidones of type C represent an important class of compounds due to their well-known biological activity.¹ Pyrimidones of this type were recently found to inhibit a series of hepatitis C virus (HCV) NSSB polymerase² and have also shown anxiolytic activity.³ Most synthetic strategies toward these densely functionalized heterocycles are based on two synthetic methods. The first is a three-step sequence that involves two condensations and a deprotected step from commercially available materials.⁴ The second method uses a Michael reaction between substituted amidoximes of type A with dimethyl acetylenedicarboxylate (DMAD) followed by thermal rearrangement of intermediate \mathbf{B} (Scheme 1).⁵ The Michael reaction/thermal rearrangement sequence typically affords pyrimidones in only 30–40% overall yield in the few examples that have been reported.2,3,5

The use of microwave irradiation to assist organic reactions has shown considerable advantages over thermal

Scheme 1.

0040-4039/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.12.057

reactions.⁶ Reactions that typically require high temperatures and extended reaction times have been tremendously accelerated using microwave irradiation.⁷ Herein, we report on a two-step, one-pot conversion of aldoximes to pyrimidones via a microwave-assisted thermal rearrangement of intermediate B.

For reaction optimization studies, we focused on amidoxime DMAD adducts 1a, which were isolated as a mixture of cis/trans (ratio ca. 6–10:1) crystalline solid

F Med 1a	$D_2 CO_2 Me$ Microwave 180-185 °C $D_2 C^{2}$ solvent	F 1
Entries	Solvents ^a	Assay yield (%)
1	Neat	52
2	1,2-Dichlorobenzene	62
3	DME	54
4	1,2-Dichloroethane	50
5	1,4-Dioxane	66
6	DMF	38
7	IPA	35
8	Toluene	47
9	Acetonitrile	48
10	o-Xylene	68

Table 1. Solvent effect for the microwave-assisted rearrangement

^a DME = ethylene glycol dimethyl ether, DMF = N,N-dimethylformamide; IPA = 2-propanol.

Keywords: Pyrimidone; Hydroxyamidine; Rearrangement; Heterocyclic compounds; Microwave irradiation.

^{*} Corresponding author. Tel.: +1 732 594 8372; fax: +1 732 594 5170; e-mail: yongli_zhong@merck.com

in quantitative yield by treatment of 4-fluoro-N'hydroxybenzenecarboximidamide with DMAD in methanol. Intermediate **1a** was irradiated⁸ for 2 min (internal temperatures reached 185 °C) in a variety of solvents and all reactions gave >95% conversion (Table 1). We were also delighted to find that several solvents provided assay yields in >60%.⁹

Table 2. Synthesis of pyrimidones

The desired pyrimidone **1** is isolated by direct precipitation from the crude mixture via filtration to afford 60% isolated yield in >95% purity (entry 1).

The scope of the reaction sequence was investigated and all substrates shown in Table 2 were converted to pyrimidones in reasonable yield over two steps. In practice, the

Entry	Starting material	Product	Conditions	Yield (%) ^b
1 2 3	$R = F$ $R = CF_{3}$ $R = CF_{3}O$	R HN OH OH CO_2Me R $1 R = F$ $2 R = CF_3$ $3 R = CF_3O$	rt to 185 °C over 85 s	60 61 48
4 ^a	F ₃ C NH ₂ N OH	F ₃ C HN N CO ₂ Me	rt to 185 °C over 160 s	50
5	NH ₂ N N OH		rt to 185 °C over 85 s	50
6	NH ₂ N OH		rt to 182 °C over 85 s	50
7	O O NH ₂	$ \begin{array}{c} 0 \\ HN \\ O \\ O \\ O \\ T \end{array} \begin{array}{c} O \\ O $	rt to 185 °C over 85 s	59
8 9	$R = Me$ $R = CO_2Et$	$O H H H H CO_2 Me$ $B R = Me$ $9 R = CO_2 Et$	rt to 185 °C over 85 s	48 50
10 ^a		$ \begin{array}{c} $	rt to 185 °C over 120 s	39
11 ^a	H NH ₂ H N-OH O OMe OMe	HN HN N CO ₂ Me MeO O MeO O MeO	rt to 170 °C over 300 s	67

^a The hydroxyamidines were prepared by reaction of their corresponding nitrile with 50% aqueous hydroamine in methanol. ^b Isolated yield.

amidoxime was dissolved in methanol, DMAD (1.05 equiv) was added dropwise at -10 °C, and then slowly allowed to warm to ambient temperature over 6 h (>98% conversion). The reaction mixture was concentrated and then dissolved in o-xylene. The solution was microwave irradiated⁸ for 1–2 min and the resulting slurry was aged at room temperature for 1 h. The crystalline solid was isolated by filtration, washed with toluene, MTBE, and finally 1:1 methanol/0.5 N HCl. The solid was then dried under vacuum to afford the desired pyrimidone. A variety of substituted aldoximes including aromatic (entries 1-6),¹⁰ and functionalized aliphatic (entries 7–9), and N-protected α -amino amidoximes (entries 10 and 11) were efficiently cyclized to the corresponding pyrimidones in an average isolated yield of $52\%.^{11}$

In conclusion, we have developed a practical and efficient procedure for the rapid construction of highly functionalized pyrimidones via microwave irradiation.

Acknowledgement

We thank Dr. Philip J. Pye for helpful discussions.

References and notes

- O'Brien, D. E.; Weinstock, L. T.; Springer, R. H.; Cheng, C. C. J. Heterocycl. Chem. 1967, 4, 49–53.
- (a) Summa, V.; Petrocchi, A.; Matassa, V. G.; Taliani, M.; Laufer, R.; Francessco, R. D.; Altamura, S.; Pace, P. J. Med. Chem. 2004, 47, 5336–5339; (b) Stansfield, I.; Avolio, S.; Colarusso, S.; Gennari, N.; Narjes, F.; Pacini, B.; Ponzi, S.; Harper, S. Bioorg. Med. Chem. Lett. 2004, 14, 5085–5088.
- 3. Wagner, E.; Becan, L.; Nowakowska, E. Bioorg. Med. Chem. Lett. 2004, 12, 265–272.
- (a) Johnson, T. B.; Caldwell, W. T. J. Am. Chem. Soc. 1929, 51, 873–880; (b) Budesinsky, Z.; Jelinek, V.; Prikryl, J. J. Collect. Czech. Chem. Commun. 1962, 27, 2550–2560; (c) Sunderland, C. J.; Botta, M.; Aime, S.; Raymond, K. N. Inorg. Chem. 2001, 40, 6746–6756; (d) Dreher, S. D.; Ikemoto, N.; Gresham, V.; Liu, J.; Dormer, P. G.; Balsells, J.; Mathre, D.; Novak, T. J.; Armstrong, J. D., III Tetrahedron Lett. 2004, 45, 6023–6025.

- 5. Culbertson, T. P. J. Heterocycl. Chem. 1979, 16, 1423-1424.
- 6. For reviews, see: (a) Perreux, L.; Loupy, A. Tetrahedron 2001, 57, 9199-9223; (b) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225-9283; For recent microwave-assisted reactions, see: (c) Moreno, A.; Gomez, M. V.; Vazquez, Z.; Hoz, A.; Diaz-Ortiz, A.; Prieto, P.; Mayoral, J. A.; Pires, E. Synlett 2004, 1959-1963; (d) McIntosh, C. E.; Martinez, I.; Ovaska, T. V. Synlett 2004, 2579-2581; (e) Davies, H. M. L.; Beckwith, E. J. J. Org. Chem. 2004, 69, 9241-9247; (f) Gopalakrishnan, G.; Kasinath, V.; Singh, N. D. P. Org. Lett. 2002, 4, 781-782; (g) Tanner, D. D.; Kandanarachchi, P.; Das, N. C.; Brausen, M.; Vo, C. T.; Camaioni, D. M.; Franz, J. A. J. Org. Chem. 1998, 63, 4587-4593; (h) Raner, K. D.; Strauss, C. R.; Trainor, R. W. J. Org. Chem. 1995, 60, 2456-2460; (i) Martinez, I.; Alford, P. E.; Ovaska, T. V. Org. Lett. 2005, 7, 1133-1135; (j) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2005, 127, 15394-15396.
- (a) Seijas, J. A.; Vazquez-Tato, M. P.; Carballido-Reboredo, R. J. Org. Chem. 2005, 70, 2855–2858; (b) Gauvreau, D.; Barriault, L. J. Org. Chem. 2005, 70, 1382–1388; (c) Das, S. K.; Reddy, K. A.; Roy, J. Synlett 2003, 1607–1610; (d) Patil, B. S.; Vasanthakumar, G.-R.; Babu, V. V. S. J. Org. Chem. 2003, 68, 7274–7280; (e) Sudrik, S. G.; Chavan, S. P.; Chandrakumar, K. R. S.; Pal, S.; Date, S. K.; Chavan, S. P.; Sonawane, H. R. J. Org. Chem. 2002, 67, 1574–1579; (f) Sanchez-Sancho, F.; Mann, E.; Herradon, B. Synlett 2000, 509–513.
- Smith Synthesizer microwave set at 80% of a total output of 1000 W or with the temperature control set to 185 °C.
- 9. The control experiment using thermal heat: A solution of **1a** (1.00 g) in *o*-xylene (5 mL) was heated in reflux using an oil bath for 3.5 h to give >95% conversion. The assay yield and isolated yield of desired product **1** were 61% and 53%, respectively.
- 10. The reported yield for Table 1, entry 6 was 44% (crude) or 21% after recrystallization from xylene (see Ref. 5).
- 11. All new compounds gave satisfactory analytical and spectral data in accordance to their structures. Selected data for compound 1: ¹H NMR (400 MHz, DMSO- d_6) δ : 8.05 (dd, J = 8.7, 5.5 Hz, 2H), 7.33 (t, J = 8.7 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ : 166.2, 164.0 (d, J = 248 Hz), 159.9, 130.1, 130.0, 130.1 (d, J = 10 Hz), 129.0, 116.0 (d, J = 22 Hz). Compound **5**: ¹H NMR (400 MHz, CDCl₃) δ : 11.23 (br s, 1H), 10.91 (br s, 1H), 8.61 (br d, J = 4.5 Hz, 1H), 8.39 (d, J = 8.0 Hz, 1H), 7.88 (td, J = 8.0, 1.5 Hz, 1H), 7.44 (dd, J = 8.0, 4.5 Hz, 1H), 4.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 169.8, 156.9, 152.0, 148.7, 147.3, 143.7, 137.6, 126.1, 126.0, 121.4, 53.4.